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We present a combined mean-field and simulation approach to different models describing the dynamics of
classes formed by elements that can appear, disappear, or copy themselves. These models, related to a para-
digm duplication-innovation model known as Chinese restaurant process, are devised to reproduce the scaling
behavior observed in the genome-wide repertoire of protein domains of all known species. In view of these
data, we discuss the qualitative and quantitative differences of the alternative model formulations, focusing in
particular on the roles of element loss and of the specificity of empirical domain classes.
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I. INTRODUCTION

Understanding the complexity of genomes and the drives
that shape them is a fundamental problem of contemporary
biology �1�, which poses a number of challenges to contem-
porary statistical mechanics. Considering this problem from
a large-scale viewpoint, the basic observables to account for
are the distributions of the different “functional components”
�such as genes, introns, noncoding RNA, etc.� encoded by
sequenced genomes of varying size.

When these genome-wide data are parametrized by mea-
sures of “genome size” �such as the number of bases or the
number of genes in a genome�, there are important emerging
“scaling laws” both for the classes of evolutionary related
genes �2–4�, the functional categories of genes �5,6�, and
some noncoding parts of genomes �7�. These scaling laws are
the signs of universal invariants in the processes and con-
straints that gave rise to the genomes as they can be observed
today. A current challenge is the understanding of these laws
using physical modeling concepts and the comparison of the
models to the available whole-genome data. This effort can
help disentangle neutral from selective effects �8,9�.

Here, we consider the statistical features of the set of
proteins expressed by a genome or proteome. A convenient
level of analysis is a description of the proteome in terms of
structural protein domains �10�. Domains are modular “to-
pologies,” or subshapes, forming proteins �11�. A domain
determines a set of potential biochemical or biophysical
functions and interactions for a protein, such as binding to
other proteins or DNA and participation in well-defined
classes of biochemical reactions �6,10�. Despite the practi-
cally unlimited number of possible protein sequences, the
repertoire of basic topologies for domains seems to be rela-
tively small �12�. With a loose parallel, domains could be
seen as an “alphabet” of basic elements of the protein uni-
verse. Understanding the usage of domains across organisms
is as important and challenging as decoding an unknown
language.

The content of a genome is determined primarily by its
evolutionary history, in which neutral processes and natural

selection play interdependent roles. In particular, the coding
parts of genomes evolve by some well-defined basic
“moves:” gene loss, gene duplication, horizontal gene trans-
fer �the transfer of genetic material between unrelated spe-
cies�, and gene genesis �the de novo origin of genes�. Since
domains are modular evolutionary building blocks for pro-
teins, they are coupled to the dynamics followed by genes. In
particular, a new domain topology can emerge by genesis or
horizontal transfer and new domains of existing domain to-
pologies can emerge by duplication or be lost. Finally, to-
pologies can be completely lost by a genome if the last do-
main that carries them is lost �see Fig. 1�.

Large-scale data concerning structural domains are avail-
able from bioinformatic databases and can be analyzed at the

FIG. 1. �Color online� Scheme of the generic features of the
duplication-innovation-loss model. �Top� The sequences of proteins
coded by a genome can be broken down into domains, represented
by colored boxes. All the boxes of the same color, representing
domains with the same topology, are collected in the same domain
class. �Bottom� Basic moves. Elements of a class can be duplicated
or lost and new classes can be formed with prescribed probabilities.
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genome level. These coarse-grained data structures can be
represented as sets of “domain classes” �the sets of all real-
izations of the same domain topology in proteins� populated
by domain realizations. In particular, much attention has
been drawn by the intriguing discovery that the population
of domain classes has power-law distributions �13–17�:
the number F�j ,n� of domain classes having j members
follows the power law �1 / jz, where the exponent z typi-
cally lies between 1 and 2. An interesting thread of modeling
work ascribes the emergence of power laws to a generic
preferential-attachment principle due to gene duplication.
Growth models are formulated as nonstationary, duplication-
innovation models �13,18,19� and as stationary birth-death-
innovation models �14,20–22�.

Intriguingly, as we have recently shown �23�, the domain
content of genomes also exhibits scaling laws as a function
of the total number of domains n, indicating that even evo-
lutionarily distant genomes show common trends where the
relevant parameter is their size.

�i� The number of domain classes �or distinct hits of the
same domain� concentrates around a master curve F�n� that
appears to be markedly sublinear with size, perhaps saturat-
ing.

�ii� The fitted exponent of the power-law-like distribution
F�j ,n� of domain classes having j members, in a proteome
of size n, decreases with genome size. In other words, there
is evidence for a cutoff that increases linearly with n.

�iii� The occurrence of fold topologies across genomes is
highly inhomogeneous—some domain superfamilies are
found in all genomes, some rare, with a sigmoidlike drop
between these two categories �35�.

We recently reported the above collective trends and
showed how the scaling laws in the data could be reproduced
using universal parameters with nonstationary duplication-
innovation models. Our results indicate that the basic evolu-
tionary moves themselves can determine the observed scal-
ing behavior of domain content, a priori of more specific
biological trends.

This modeling approach, while similar in formulation to
that of previous investigators �13� who did not consider these
scaling laws, has important modifications, mostly related to
the scaling with n of the relative probability of adding a
domain belonging to a new class and duplicating an existing
one. To reproduce the observed trends, newly added domain
classes cannot be treated as independent random variables,
but are conditioned by the preexisting proteome structure.

In this paper, we give a detailed account of this modeling
approach, considering different variants of duplication-
innovation-loss models for protein domains, and relate them
to available results in the mathematical and physical litera-
tures. In particular, we will focus on mean-field approaches
for the models and comparison to direct simulation and we
will show how they can be generally used to obtain the main
qualitative and quantitative trends.

The first part of the paper is devoted to the minimal model
formulation, which only includes duplication and innovation
moves for domains, and relates to the so-called Chinese res-
taurant process (CRP) of the mathematical literature �24,25�.
We will review the main known results for this model, derive
analytically solvable mean-field equations, and show how

they compare to the available rigorous results and the finite-
size behavior.

The rest of the paper is devoted to biologically motivated
variants of the main model related to two main features:
including the role of loss of domains, which is a frequently
reported event, and breaking the exchange symmetry of do-
main classes, which is unrealistic, as specific protein do-
mains perform different biological functions. For these vari-
ants, we will present mean-field and simulations results and
characterize their phenomenology in relation with empirical
data. In particular, while in general for these variants the
rigorous mathematical results existing for the CRP break
down, we will show how the use of simple mean-field meth-
ods proves to be a robust tool for accessing the qualitative
phenomenology.

II. GENERIC FEATURES OF THE MODEL

The model represents a proteome through its repertoire of
domains. Domains having the same topology are collected in
domain classes �Fig. 1�. Thus the relevant data structures are
partitions of elements �domains� into classes. The basic ob-
servables considered are the following: n, the total number of
domains, f�n�, a random variable indicating the number of
classes �distinct domain topologies� at size n, a random vari-
able ki, the population of class i, ni, the size at birth of class
i, and f�j ,n�, the number of domain classes having j mem-
bers. We will generally indicate mean values by capitalized
letters �e.g., F�n� is the mean value of f�n�, Ki the mean
value of ki, etc.�.

The model is conceived as a stochastic process based on
the elementary moves available to a genome �Fig. 1� of add-
ing and losing domains, associated to relative probabilities:
pO, the probability to duplicate an old domain �modeling
gene duplication�, pN, the probability to add a new domain
class with one member �which describes domain innovation,
for example, by horizontal transfer�, and pL, a loss probabil-
ity �which we will initially disregard and consider in a sec-
ond step�. Iteratively, either a domain is added or it is lost
with the prescribed probabilities.

An important feature of the duplication move is the �null�
hypothesis that duplication of a domain has uniform prob-
ability along the genome and thus it is more probable to pick
a domain of a larger class. This is a common feature with
previous models �13�. This hypothesis creates a
“preferential-attachment” �26� principle, stating the fact that
duplication is more likely in a larger domain class, which, in
this model as in previous ones, is responsible for the emer-
gence of power-law distributions.

In mathematical terms, if the duplication probability is
split as the sum of per-class probabilities pO

i , this hypothesis
requires that pO

i �ki, where ki is the population of class i, i.e.,
the probability of finding a domain of a particular class and
duplicating it is proportional to the number of members of
that class. It is important to notice that in this model, while n
can be used as an arbitrary measure of time, the ratio of the
time scales of duplication and innovation is not arbitrary and
is set by the ratio pN / pO. In the model of Gerstein and co-
workers, this is taken as a constant, as the innovation move
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considered to be statistically independent from the genome
content. In particular, both probabilities are considered to be
constant. This choice has two problems. First, it cannot give
the observed sublinear scaling of F�n�. Indeed, if the prob-
ability of adding a new domain is constant with n, so will be
the rate of addition, implying that this quantity will increase
on average linearly with genome size. Moreover, the same
model gives power-law distributions for the classes with ex-
ponent larger than 2, in contrast with most of the available
data.

Previous investigators did not consider the fact that ge-
nomes cluster around a common curve �23� and thought of
each of them as coming from an independent stochastic pro-
cess with different parameters �13�. Furthermore, choosing
constant pN implies that for larger genomes, the influx of
new domain families is heavily dominant on the flux of du-
plicated domains.

As noted by Durrett and Schweinsberg �19�, constant pN
makes sense only if one thinks that new fold topologies
emerge from an internal “nucleationlike” process with con-
stant rate rather than from an external flux. This process
could be pictured as the genesis of new topologies from se-
quence mutation. Empirically, while genesis events are re-
ported �27� and must occur, it is clear that domain topologies
are very stable and the exploration of sequence space is not
free, but conditioned by a number of additional important
factors including chromosomal position and expression pat-
terns of genes and their role in biological networks �28�.
Moreover, in prokaryotes, it is known that a large contribu-
tion to the innovation of coding genomes is provided by
horizontal gene transfer �27�, the exchange of genetic mate-
rial between species, which can be reasonably represented in
a model as an external flux as opposed to the internal nucle-
ation process representing genesis.

For eukaryotes, horizontal gene transfer is less important
and there can be multiple relevant innovation processes in-
cluding exonization, loss of exons, and alternative start sites
changing the protein. We have not attempted to model the
detailed processes leading to innovation and because of their
higher complexity in eukaryotes, we prefer to compare the
model to the prokaryote data set alone. However, we can
point out that in principle, the same model has good agree-
ment with the set of prokaryotes and eukaryotes together
�23�. In eukaryotes, the change in number of classes with
respect to size change is generally small, but seems to have a
trend that “glues” quite well with prokaryotes �and in par-
ticular, innovation decreases with size�.

Motivated by the sublinear scaling of the number of do-
main classes and taking into account in an effective way the
role of processes that condition the addition of new domain
topologies, we consider statistically dependent moves. On
general grounds, if a genome is a complex system where
subcomponents interact in clusters and nonlocally, domain
topologies as well have to be coordinated with other parts of
the system, so that it is reasonable that evolutionary moves
are conditioned by what is already present and that the actual
number of domain topologies need not to be trivially an ex-
tensive quantity.

The simplest way to implement this choice is to concen-
trate on the innovation process. Let us consider the indicator

��n�, taking value 1 if a new domain class is born at size n
and value 0 otherwise. The number of classes at size n will
be f�n�=� j�n��j�. If the random variables ��n� are indepen-
dent and identically distributed, i.e., p���n�=1�= pN=const,
f�n� follows a Bernoulli distribution whose mean value is
linear in n. Moreover, f�n�

n will be increasingly concentrated
with increasing n on the deterministic value pN. If vice versa
the random variables ��n� are statistically dependent or also
simply not identically distributed, the mean value may not be
linear in n and the concentration phenomenon may not occur.
Both features, dependence and lack of concentration, are im-
portant. The former is necessary to obtain the observed sub-
linear behavior, the latter might create an intrinsic “diversity”
in the genome ensemble, independently on the finite size of
observed genomes �however, the currently available data are
insufficient to establish this empirically�.

III. SIMPLEST FORMULATION: CHINESE
RESTAURANT PROCESS

We investigate this process using analytical asymptotic
equations and simulations. We start by considering only
growth moves, by duplication and innovation, postponing the
inclusion of domain loss in the model. We will see that the
resulting model contains the basic qualitative phenomenol-
ogy of the scaling laws and can thus be regarded as the
paradigmatic case. One can arrive at the defining equations
with different arguments. A simple way is to assume that
domain duplication is a rare event, described by a Poisson
distribution with characteristic time �, during which there is
a flux of external or new domain topologies �

� . Then pN

= �
n+� . In this case, the variables ��n� are independent but not

identically distributed. It is immediate to verify that f�n� has
mean value given by � j=1

n �
�+j and thus grows as �� log n.

The same result can be obtained by thinking of domain ad-
dition as a dependent move, conditioned on n, f�n�, or both.

It is possible to consider different intermediate scenarios
where the pool of old domain classes is in competition with
the universe explorable by the new classes. The simplest
scheme, which turns out to be quite general, can be obtained
by choosing the conditional probability that a new class is
born ���n+1�=1� given the fact that f�n�= f at size n,

pN =
� + �f

n + �
, �1�

hence

pO =
n − �f

n + �
, �2�

where ��0 and �� �0,1�.
Considering per-class duplication probability, one can

choose the following expression that asymptotically estab-
lishes the preferential-attachment principle:

pO
i =

ki − �

n + �
. �3�

Here, � represents a characteristic number of domain classes
needed for the preferential-attachment principle to set in and
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defines the behavior of f�n� for small n �n→0�. � is the most
important parameter, which sets the scaling of the
duplication-innovation ratio. Intuitively, the smaller the �,
the more the growth of f is depressed with growing n, and
since pN is asymptotically proportional to the class density
f /n, it is harder to add a new domain class in a larger or
more heavily populated genome. As we will see, this implies
pN / pO→0 as n→	, corresponding to an increasingly sub-
dominant influx of new fold classes at larger sizes. This
choice reproduces the sublinear behavior for the number of
classes and the other scaling laws described in properties
�i–iii�.

This kind of model has previously been explored in sta-
tistics under the name of Pitman-Yor or CRP �24,25,29,30�,
where it is known as one of the paradigmatic processes that
generate partitions of elements into classes that are symmet-
ric by swapping or “exchangeable.” This process is used in
Bayesian inference and clustering problems �31�. In the Chi-
nese restaurant �with table sharing� parallel, individual do-
mains correspond to customers and tables are domain
classes. A domain belonging to a given class is a customer
sitting at the corresponding table. In a duplication event, a
new customer is seated at a table with a preferential-
attachment principle and in an innovation event, a new table
is added.

Mean-field theory for the CRP

A simple mean-field treatment of the CRP allows access-
ing its scaling behavior. Rigorous results for the probability
distribution of the fold usage vector �k1 , . . . ,kF�, for f�n�
=F, are in good agreement with mean-field predictions. It is
important to note that for this stochastic process, the usual
large-deviation theorems do not hold, so that large-n limit
values of quantities such as f�n�

F�n� do not converge to numbers,
but rather to random variables �24�. Despite of this non-self-
average property, it is possible to understand the scaling of
the averages Ki and F �of ki and f , respectively� at large n,
writing simple “mean-field” equations, for continuous n.
Note that rigorously, the mean value Ki�n� is still a random
variable, function of the �stochastic� birth time ni of class i.

From the definition of the model, we obtain

�nKi�n� =
Ki�n� − �

n + �
, �4�

�nF�n� =
�F�n� + �

n + �
. �5�

These equations have to be solved with initial conditions
Ki�ni�=1 and F�1�=1. Hence, for ��0, one has

Ki�n� = �1 − ��
n + �

ni + �
+ � �6�

and

F�n� =
1

�
	�� + ��
n + �

�
��

− �� � n�, �7�

while for �=0,

F�n� = � log�n + �� � log�n� . �8�

These results imply that the expected asymptotic scaling of
F�n� is sublinear, in agreement with observation �i�.

The mean-field solution can be used to compute the
asymptotic of P�j ,n�=F�j ,n� /F�n�, following the same line
of reasoning used by Barabasi and Albert for the preferential-
attachment model �26�. This works as follows. From the so-
lution, j
Ki�n� implies ni
n�, with n�= �1−��n−��j−1�

j−� , so that
the cumulative distribution can be estimated by the ratio of
the �average� number of domain classes born before size n�

and the number of classes born before size n, P�Ki�n�
 j�
=F�n�� /F�n�. P�j ,n� can be obtained by derivation of this
function. For n , j→	 and j /n small, we find

P�j,n� � j−�1+��, �9�

for ��0, and

P�j,n� �
�

j
, �10�

for �=0. The above formulas indicate that the average
asymptotic behavior of the distribution of domain class
populations is a power law with exponent between 1 and 2,
in agreement with observation �ii�. In contrast, the behavior
of the model of Gerstein and co-workers �13,18,19� can be
found in this framework by taking improperly �=1, that is
for constant pN, pO. It gives a linearly increasing F�n� and a
power-law distribution with asymptotic exponent 2 for the
domain classes. Note that the phenomenology of the
Barabasi-Albert preferential-attachment scheme �26� is re-
produced by a CRP-like model where at each step, a new
domain class �corresponding to the new network node� with
on average m members �the edges of the node� is introduced
and at the same time m domains are duplicated �the edges
connecting old nodes to the newly introduced one�.

It is possible to obtain the same results through a different
route compared to the above reasoning, by writing the hier-
archy of mean-field equations for F�j ,n�, using a master-
equation-like approach. Similarly as what happens for the
zero-range process �32�, these equations contain source and
sink terms governing the population dynamics of classes.
Duplications create a flux from classes with j−1 to classes
with j members, while only F�1,n� has a source term com-
ing from the innovation move:


�nF�n�=

�F�n� + �

n + �

�nF�1,n�=
�F�n� + �

n + �
− �1 − ��

F�1,n�
n + �

�nF�2,n�= �1 − ��
F�1,n�
n + �

− �2 − ��
F�2,n�
n + �

¯ ¯ .

� �11�

We consider the limit of large n and use the ansatz F�j ,n�
=� jF�n�. This ansatz can be justified empirically and by
simulations, as shown in Fig. 2, which compares this feature
in empirical data and in simulations of different variants of
the model.
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We have


�nF�n�=

�F�n�
n

��1= � − �1 − ���1

��2= �1 − ���1 − �2 − ���2

¯

�� j= �j − 1 − ��� j−1 − �j − ��� j ,

� �12�

giving


�1= �

2�2= �1 − ���1

¯

j� j= �j − 1 − ��� j−1.
� �13�

The solution of these equations is

� j = �
l=1

j−1

�l − ��
1

��j + 1�
� =

�

��1 − ��
�j − 1��1−����j − 1�

��j + 1�
,

�14�

which can be estimated as

� j = �
1

��1 − ��	1

j
�1+�

, �15�

giving the result for the scaling of F�j ,n� and its prefactor.

IV. DIRECT SIMULATION OF THE CRP
AND FINITE-SIZE EFFECTS

Going beyond scaling, the probability distributions gener-
ated by a CRP contain large finite-size effects that are rel-
evant for the experimental genome sizes. In this section, we
analyze the finite-size effect affecting the distribution over
the domain classes, obtained performing direct numerical
simulations of different CRP realizations. The simulations
allow to measure F�n� and F�j ,n� for finite sizes and in
particular for values of n that are comparable to those of
observed genomes shown in Fig. 3.

The normalized distribution of the number of classes with
j domains over a genome of length n reaches the theoretical
distribution suggested by our model only in the asymptotic
limit

(b)(a)

(c) (d)

FIG. 2. �Color online� The
classes with j members form a fi-
nite constant fraction of the total
number of classes. �a� F�j ,n� �the
number of classes with j mem-
bers� is plotted vs F�n� for differ-
ent values of j in empirical data
and �b� simulations of the CRP
��=0.32, �=50� without and
with domain loss �=0.2� in
model with �c� uniform loss and
�d� weighted loss. In the plots
from simulations, the lines in
lighter colors represent ten differ-
ent realizations, while the points
with error bars are the mean value
over them. Figure shows that add-
ing domain loss to the model has
no qualitative consequences in the
behavior of the domain class
histograms.

(b)(a)

FIG. 3. �Color online� �a� Cumulative distri-
butions for prokaryotes �data from the SUPERFAM-

ILY database�. Each is the cumulative histogram
of domains in classes for a single genome. �b�
Fitted exponent of F�j ,n� from empirical data of
all prokaryotes, plotted as a function of n.
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F�j,n�
F�n�

→
n→	

p��j� =
���j − ��

��1 − ����j + 1�
. �16�

It is possible to obtain more information by studying the
ratio of the asymptotic distribution and the distribution ob-
tained from the CRP simulation as shown in Fig. 4�a�. The
plot shows that there is a value m��n�, depending on the size
n of the genome, beyond which the distribution is not any-
more consistent with p��j� but shows exponential decay and
large fluctuations.

In order to obtain a quantitative estimate of the deviation
from scaling generating the cutoff, we define an order param-
eter as follows. Using data obtained from the simulation as in
Fig. 4�a�, we find the mean of the first 30 points of the
plotted function and then compute the standard deviation �
by analyzing windows of K points together. The cutoff is
defined when �
, where  is a parameter. The result of this
procedure can be seen in Fig. 4�b�. The cutoff shows a linear
dependence from the genome length n. To make sure the
procedure does not depend too much on the number of itera-
tions NI used to obtain the mean value of F�j ,n�, we per-
formed it for different values of NI. As can be expected �Fig.
4�c��, more statistics is needed for probing the cutoff trend in
those regions where the probability density function is very
small. Were it is necessary to obtain from the distribution
over domains n an estimate of parameters for the underlying
CRP, one could decide to consider only data with j� jcutoff.
At the scales that are relevant for empirical data, finite-size
corrections are substantial. Indeed, the asymptotic behavior
is typically reached for sizes of the order of n�106, where
the predictions of the mean-field theory are confirmed. Com-
paring the histogram of domain occurrence for the mean-
field solution of the model, simulations, and data, it becomes
evident that the intrinsic cutoff set by n causes the observed
drift in the fitted exponent of the empirical distribution vis-
ible in Fig. 3. This means that the common behavior of the
slopes followed by the population of domain classes for ge-
nomes of similar sizes can be ascribed to finite-size effects of
a common underlying stochastic process.

Beyond the linear cutoff, the behavior of the distribution
becomes realization dependent due to the breaking of self-
average �33�. The relevant parameter to disentangle the real-
ization dependence is f . High-f realizations have different
tails of the distribution from low-f ones, giving rise to the
large fluctuations observed in Fig. 4�a�. Thus, while the
mean-field approach is successful in predicting the
asymptotic scaling of the distribution F�j ,n�, it does not cap-
ture the finite-size effects which can be observed in single
realization of the CRP process with finite n and f . Beyond
mean field is possible to obtain more information by consid-
ering the sum of all CRP trajectories conditioned to reaching
configurations with given n and f .

This enables a statistical-mechanical derivation of the nor-
malized distribution of the number of domains with f classes
over a genome of length �number of domains� n. Since the
focus here is on the mean-field approach, the calculation is
described in a parallel work �33�.

V. OCCURRENCE OF DOMAIN CLASSES
AND CRP REALIZATIONS

The above model does not describe evolutionary time in
generations. Conversely, it reproduces random ensembles of
different genomes generated one from the other with the ba-
sic moves of duplication and innovation �and loss, see be-
low�. It considers only events that are observed at a given n,
independently on when or why they happened in physical or
biological time. Genomes from the same realization can be
thought of as a trivial tree of life, where each value of n
gives a new specie. In the case including domain deletions,
more genomes of the same history can have the same size. In
contrast, independent realizations are completely unrelated.

The scaling laws in F�n� and F�j ,n� hold for the typical
realization, indicating that the scaling laws originate from the
basic evolutionary moves and not from the fact that the spe-
cies stem from a common tree with intertwined paths due to
common evolutionary history. For example, two completely
unrelated realizations will reach similar values of F at the

(b)

(a)

(c)

FIG. 4. �Color online� �a� Ratio of finite-size
and asymptotic values for the distribution of do-
main classes population F�j ,n� taken from 500
realizations of a CRP with �=0.32 and �=50.
The three plots corresponds to different values of
n. �b� Linear n dependency for the cutoff in a
CRP. The parameters in the plot are �=0.1 and
�=200. A similar trend can be observed for other
values of the parameters. �c� Cutoff trends ob-
tained from a CRP with �=0.44 and �=60 and a
different number of iterations. The procedure has
parameters K=10 and =0.5.
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same value of n. The data confirm this fact: phylogenetically
distant bacteria with similar sizes have very similar number
and population distribution of domain classes �shown in
Sec. VII�.

While the scaling laws are found independently on the
realization of the Chinese restaurant model, the uneven oc-
currence of domain classes can be seen as strongly depen-
dent on common evolutionary history. Averaging over inde-
pendent realizations, the prediction of the CRP is that the
frequency of occurrence of any domain class would be equal,
as no class is assigned a specific label. In the Chinese res-
taurant metaphor, the customers only choose the tables on
the basis of their population and all the tables are equal for
any other feature.

In order to capture this behavior with the model, one can
consider the statistics of domain topology occurrence of a
single realization, which is an extremely crude, but compara-
tively more realistic description of common ancestry. In
other words, in this case, the classes that appear first are
obviously more common among the genomes and the quali-
tative phenomenology is restored, without the need of any
adjustment in the model definition �Fig. 5�.

VI. DOMAIN LOSS

Loss of genes, and thus of domains, is reported to occur
frequently in genomes. We will discuss now variants of the
model considering the introduction of a domain deletion or
loss rate. The question we ask is whether the introduction of
domain loss, which we consider mainly as a perturbation,
affects the qualitative behavior of the model, for example, by
generating different scaling behavior or phase transitions. We
will see that the answer to all these questions is mostly nega-
tive even for noninfinitesimal perturbations, provided the
loss rate is constant and does not scale itself with F and n.
The main exception to this behavior is found when the loss
probability of a domain depends on its own class size.

We introduce domain loss through a new parameter ,
which defines a loss probability pL in two a priori different
ways. �1� We can distribute this probability equally among
domains so that the per-class loss probability is pL

i =
ki

n . Con-
sequently, the duplication and innovation probabilities pO
and pN are rescaled by a factor �1−�. �2� We can also weigh
the loss probability of a domain on its own class size, in the
same way as domains are duplicated in the standard CRP, so
we obtain a per-class loss move with probability pL

i =
ki−�

n+� ,
giving a total pL= n−�F

n+� and the rescaling of pO and pN. We
will see that models �1� and �2� are not equivalent.

On technical grounds, the introduction of domain loss
makes the stochastic process entirely different: n is now a
random variable and all the observables that depend on it
�e.g., F�n�� are stochastic functions of this variable. Another
parameter, t, describes the iterations of the model. Opera-
tively, we tackle the two models with the usual mean-field
approach, writing equations for n and F of the kind �tn
=Q�n ,F�, �tF=R�n ,F�, and hence obtain the behavior as a
function of n by considering �nF= R�n,F�

Q�n,F� . The exact meaning
of these equations is not straightforward. For example, F�n�
should represent the average on all histories passing by n, but
the differential equation strictly describes only the depen-
dence of the observable from the actual value of the random
variable n. Nevertheless, the predictions of this mean-field
approach agree well with the results of simulations, indicat-
ing that these complications typically do not affect the be-
havior of the means. We will consider situations where, on
average, genomes are not shrinking.

Considering model �1�, we can write the mean-field equa-
tions as

�tF�t� = �1 − �
�F�t� + �

n + �
− 

F�1,n�
n

, �17�

�tKi�t� = �1 − �
Ki�t� − �

n + �
− 

Ki�t�
n

, �18�

where the sink term for F derives from domain loss in
classes with a single element, quantified by F�1,n�. Since
time does not count genome size, one has to consider the
evolution of n with time t, given in this case by �tn=1−2.
In order to solve these expressions, we use the ansatz
F�1,n�=�1F�n� and considering the limit in large n. The
ansatz is verified by simulations and holds also for empirical
data, as previously shown �Fig. 2�. The first equation reads

�nF�n�
F�n�

=
1

n
	 �1 − �� − �1

1 − 2
� . �19�

The above equation gives the conventional scaling for
F�n� and K�n� with � replaced by �R=

�1−��−�1

1−2 , the correc-
tion resulting from the measured value of �1. By the use of
computer simulations, we notice that the �1 coefficient tends
to � for infinite-size genomes �Figs. 6�a�–6�c��, so that the
asymptotic trend of the equally distributed domain loss is
identical to that of the standard CRP. This behavior is inde-
pendent from the chosen �1 /2, as the asymptotic regime
depends only on the growth of F�n� governed by �.

FIG. 5. �Color online� Single realization averages reproduce
qualitatively empirical topology occurrence �the fraction of ge-
nomes where the given domain topology is found, normalized by
the total number of genomes�. Domain topology ranked occurrence
in typical realizations of the CRP with different parameters �sym-
bols�, compared to the empirical data for bacteria �continuous line�.
The simulated data were obtained considering the occurrence curve
for 500 realizations of the process for all sizes from n=300 to n
=8000 �“uniform”�, i.e., the range of sizes observed in the data, or
directly for the set of empirical sizes of the genomes �“sampled”�.
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When we analyze the domain distribution of finite-size
genomes, we obtain the conventional results: the power-law
depends on the genome size, but not on the value of  �Figs.
6�b� and 6�d��. This is explained considering the fact we are
comparing runs with fixed genome size, thus with different
number of moves, and we do not consider genomes that lose
all their own domains. In fact, biologically, one cannot trace
the number of moves needed to reach a specific genome, but
essentially we can observe only genomes in their actual state.

More precise results can be obtained by the use of the
mean-field “master-equation” approach sketched above. Us-
ing the same ansatz F�j ,n�=� jF�n�, we obtain the following
hierarchy of equations for � j,

�B + j + �1 − ��j − ���� j

= �1 − ��j − 1 − ��� j−1 + �j + 1�� j+1, �20�

with B= �1−��−�1. It is possible to estimate the solution
of this system by taking a continuum limit as

B��x� + �1 − ��x��x − a���x�� − �x��x� = 0, �21�

which can be solved giving

��x� � 	1

x
�1+Z

, �22�

with Z= B
1−2 . We also find F�n�=nZ, which is consistent with

the constraint � j j� j =
n

F�n� since � j j� j �n1−Z. It is then clear
that the introduction of domain loss is equivalent to a rescal-
ing of the parameter � to �R=Z�� ,�, but in our case,
Z�� ,�=� asymptotically. The case �=0 has to be treated
separately, but the behavior is similar �Fig. 6�d��.

A similar procedure is applicable to model �2�. In this
case, however, the dependence of the effective death rate
from n can bring to an interesting change in the phenomenol-

(b)(a)

(c) (d)

FIG. 6. �Color online� A model
with uniform domain loss �model
�1�� does not lead to a change of
qualitative behavior with respect
to absence of domain loss. We es-
timated �1 from simulations with
a linear fit of the measured �linear�
F�1,n�. The measured coefficient
�1 �a� approaches with the param-
eter �, hence the observed scaling
exponent �R, measured from the
simulated F�n� agrees very well
with the imposed �. �b� This trend
is weaker for smaller � but can be
regarded as a finite-size effect, as
the agreement improves �c� for in-
creasing n. The plot in �c� refers to
�=75, =0.35. Finally �d�, the
same phenomenology holds for �
=0, where the observed parameter
�R extracted from the behavior of
F�n� in simulations agrees well
with �.

(b)(a)

FIG. 7. �Color online� In a model with weighted domain loss �model �2��, the loss probability can trigger a transition between two
different scaling behaviors for F�n�. �a� Behavior of observed exponent �R vs � in simulations. The exponent saturates to unity at a critical
value that is lower than 1. Dashed lines are mean-field predictions in the ansatz of F�n� sublinear in n. �b� “Phase-diagram” for the behavior
of �R for different values of � and . Dashed line is a mean-field estimate of the transition point to �R=1, while circles and diamonds are
the �R=.9 and �R=.995 lines from simulations at n=106.
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ogy, where  can select the observed exponent �R and also
determine a regime of linear growth for F�n�.

To understand this point, we can consider the mean-field
evolution of F�n�. This is determined asymptotically by the
balance of a growth term pN��F /n and a loss term pL
�F�1,n��1−�� /n. With the usual ansatz, this gives an
asymptotic evolution equation of the kind

�nF�n� = F�n�
� − �1 − ���1

�1 − 2�n + 2�F�n�
, �23�

with the usual definitions. Simulations confirm the ansatz
F�1,n�=�1F�n� for this second model, which we will use in
the mean-field reasoning. If F�n� is intensive, i.e., asymptoti-
cally of order inferior to n, the term 2�F can be neglected
and this equation gives the scaling law F�n�R, with �R

=
�−�1�1−��

1−2 . However, this equation has solution also if F is
order n, i.e., �R=1, and the term 2�F in Eq. �23� cannot be
neglected. In this case, � and  determine the prefactor of the
scaling law F�n.

Thus, there are two self-consistent mean-field asymptotic
solutions and we expect a transition between the two distinct
behaviors. The existence of this transition is confirmed by
simulations �Fig. 7�a��: at fixed , �R saturates to �R�1 for
larger values of this parameter. The transition point can be
understood in mean field as the intersection of the two solu-
tions �R=1 and �R=

�−�1�1−��
1−2 at varying  and gives rise to

a two-parameter “phase diagram” separating the linear from
the sublinear scaling of F�n� with n, as shown in Fig. 7�b�.

In conclusion, the mean-field approach is effective in ex-
ploring the effects of domain loss, which, under some gen-
eral hypotheses, does not disrupt the basic phenomenology
of the duplication-innovation model. Specifically, there ap-
pear to be no qualitative changes introduced by a finite uni-
form loss rate as long as this rate is constant with n. A loss
rate that is weighted as the innovation rate, instead, can in-
duce an interesting transition from sublinear to linear scaling.

Thinking about the empirical system, no direct quantita-
tive estimates are currently available regarding the domain
loss rate as a function of genome size or number of classes.
For this reason, it currently appears difficult to make a defi-
nite choice for this ingredient in the model.

VII. MODELS WITH DOMAIN CLASS SPECIFICITY

In the previous sections, we analyzed models that make
no distinction between domain topologies, but the latter are

selected for duplication moves only on the basis of their
population. It is then clear that they can reproduce the ob-
served qualitative trends for the domain classes and their
distributions with one common set of parameters for all ge-
nomes. One further question is to estimate the quantitative
values of these parameters for the data. While the empirical
slope of F�n� could be seen as more compatible with a model
having �=0, as its slope decays faster than a power law for
large values of n, the slopes of the power-law distribution
of domain classes P�j ,n� and their cutoff as a function of
n are in closer agreement to a CRP with � between 0.5 and
0.7 �23�.

We will now discuss a CRP variant that is able to distin-
guish domain classes based on a priori information, thus
breaking the symmetry of the model by exchange of tables.
This is equivalent to the introduction of differently colored
“tablecloths” labeling the tables, which are determinant in
the choice for one table or the other.

Those table colors can be set by any observable of inter-
est. In our analysis, we considered the empirical occurrence
of a domain topology as a label. Indeed, the occurrence of a
given domain class is determined by its biological function.
For example, as expected, all the “core” biological functions
such as translation of proteins and DNA replication are per-
formed by highly occurring domain topologies, since this
machinery must be present in each genome. Accordingly,
these universal classes performing core functions have to ap-
pear preferentially earlier on in a model realization. This
variant of the model is important for producing informed null

FIG. 8. �Color online� Numeri-
cal solutions of the mean-field
equations of the CRP model with
selection of specific domain
classes. �Left panel� Score func-
tion F�n� for different values of �.
�Right panel� F�n� plotted in lin-
ear and logarithmic �inset� scales.

FIG. 9. �Color online� Comparison of the CRP with class speci-
ficity to experimental data. CRP parameters are �=0.75 and �
=0.32. Number of domain classes vs the length n of genome. Simu-
lations were performed for n�10 000, taking data at each interval
of 1000 units in size and considering five realizations at each step.
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models for the analysis of the empirical data and, as we will
see, shows the best agreement with respect to the scaling
laws.

We will introduce the variant with class specificity by
coupling the CRP model to a simple genetic algorithm able
to select between innovation moves that choose different
classes. Let us first introduce some notation to parametrize
domain class occurrence. We define the matrices �i

k where

�i
g
ª �1 domain i found in genome g

− 1 domain i not found in genome g .
�

�24�

It is possible to consider the mean taken along the matrix
columns

��i
emp� =

1

Ng�
g

�i
g,emp, �25�

where the label “emp” means that this value is obtained from
empirical data �Fig. 5�.

Generically, a genetic algorithm requires a representation
of the space of solution � and a function f��� that tests the
quality of the solution computed. In our case, the former is
simply the genome obtained from the a CRP step, param-
etrized by �i

k. The latter is defined as

F�g� = �
i

exp��i��i
emp�� = exp
�

i

�i��i
emp�� . �26�

The value of the above scoring function taken over simulated
genomes measures how much the set of domain classes they
possess agrees with experimental data �in this case on occur-
rence� and enables to compare different “virtual” CRP
moves. We consider the case of two virtual genomes g� and
g� generated through standard CRP steps, for simplicity
without domain loss, from an initial size n and genome g�n�.

Note that in this variant, since the empirical domain to-
pologies are a finite set, domain classes are also finite. As a
consequence, tables with a given tablecloth are extracted
without replacement, affecting the pool of available colors.
As we will see, this is an important requirement to obtain
agreement with the data, as it determines the saturation of the
function F�n� also for large values of �. We will discuss the
role of an infinite pool in the following section.

Also, as anticipated, domain classes have different “color”
or in mathematical terms, the exchangeability of the process
is lost. Classes are drawn from the set of the residual ones
with uniform probability. Genomes g� and g� are compared
through the function F and the highest score one will be the
genome g�n+1� so that g�n+1�=argmax�F�g�� ,F�g���.

In these conditions, the rigorous results present in the lit-
erature for the CRP cease to be valid. It is still possible,
however, to analyze the behavior of this variant by the mean-
field approach adopted here and to compare to simulations.
Since the selection rule chooses strictly the maximum, it is
essentially able to distinguish the sign of ��i

emp� only. For
this reason, it is sufficient to account for the positivity �which
we label by “+”� and negativity �“−”� of this function for a
given domain index i. This means that, with the simplifica-

tion of two virtual moves only, the model introduces only
one extra effective parameter, i.e., the ratio of the “universal”
�positive F� to the “contextual” �negative F� domain classes.

In order to write the mean-field equations for this model
variant, we first have to classify all the possible outcomes of
the virtual CRP moves. The genomes g� and g� proposed by
the CRP proliferation step can have the same �labeled by
“1”�, higher �“1+”� or lower �“1−”� score than their parent,
depending on pO, pN, and by the probabilities to draw a
universal or contextual domain family, p+ and p−, respec-
tively. Using these labels, the scheme of the possible states
and their outcome in the selection step is given in Table I.

From the Table I, it is straightforward to derive the modi-
fied duplication and innovation probabilities p̂O and p̂N of the
complete algorithmic iteration

TABLE I. Compound probabilities of picking up a new domain
or an old domain with positive or negative cost function.

Proliferation �g� ,g�� Probability Selection

�1,1� pO
2 old

�1,1−� 2pOpNp− old

�1,1+� 2pOpNp+ new+

�1+,1+� pN
2 p+

2 new+

�1+,1−� 2pN
2 p−p+ new+

�1−,1−� pN
2 p−

2 new−

FIG. 10. �Color online� Comparison of F�j ,n� from the SUPER-

FAMILY database to mean-field predictions and simulations of the
model with class specificity. Comparison between n-dependence of
power-law fit �lines in blue� and universality of the two parameters
from our model. Two letters identify each genome, whose full name
can be found in Table II. Simulations �lines in gray� from our model
use the same values �=0.75 and �=32.
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p̂O = pO�pO + 2pNp−� , �27�

p̂N = pN�pN + 2pOp+� = pN+ + pN−, �28�

where pN+= pNp+�2− pNp+� and pN−= pN
2 �1− p+�2 are the

probabilities that the new domain is drawn from the univer-
sal or contextual families, respectively.

We now write the macroscopic evolution equation for the
number of domain families by the usual procedure. Calling

K+�n� and K−�n� the numbers of domain classes that have
positive or negative ��i

emp� and are not represented in g�n�,

 �nF�n�= p̂N

�nK+�n�= − p̂N+

�nK−�n�= − p̂N−.
� �29�

Now, p+=K+ / �K−+K+�=K+ / �D−F�n��, so that we can
rewrite


�nF�n�= 
�F�n� + �

n + �
�	�F�n� + �

n + �
+

2K+�n�
D − F�n�
n − �F�n�

n + �
��

�nK+�n�= − 
�F�n� + �

n + �
� K+�t�

D − F�n�	2 − 
�F�n� + �

n + �
� K+�n�

D − F�n��
�nK−�n�= − 
�F�n� + �

n + �
�2
 K+�n�

D − F�n��
2

.
� �30�

The above equations have the following consistency proper-
ties:

�i� �n�K++K−+F�=0, hence K++K−+F=D ∀ n.
�ii� �nF�1, hence F�n��n.
�iii� �nF�0, �nK+�0, and �n�F+K+��0 so that F grows

faster than K+ decrease.
Choosing the initial conditions from empirical data

n0 ,F�n0�, size, and number of domain classes of the smallest
genome, we have, since F�n0��n0 and ��1,

�F�n0� + �

n0 + �
� 1. �31�

It is simple to verify that under this condition, the system
always has solutions that relax to a finite value F	�D. In-
deed, after the time n� where K+�n��=0, the equations re-
duce to �nK+=0, K−=D−F, and

�nF�n� = 
�F�n� + �

n + �
�2

, �32�

immediately giving our result. It is important to notice that
this result depends on the fact the empirical reservoir of do-
mains is finite �and thus on the biological hypothesis that the
full pool of available domain topologies is�. Indeed, in pres-
ence of an infinite reservoir of domain classes, F�n� does not
relax to a finite value. In this case, similarly as in the case of
nonuniform loss, there is a transition from linear to sublinear
scaling piloted by the parameters p+ and �. If 2p+��1, F
�n2p+�, while if 2p+�
1, F�n.

Numerical solutions of Eq. �30� give the same behavior
for F�n� as the direct simulations �Fig. 8�. In particular, while
this function grows as a power law for small genome sizes, it
saturates at the relevant scale, giving good agreement with
the data �Fig. 9�. The internal laws of domain usage of this
model were obtained from direct simulations only and give a

good quantitative agreement with the data �Fig. 10�. Finally,
Fig. 8 also shows that, for large values of � �above 0.7�, this
function reaches a maximum at sizes between 2000 and
4000. This is also where most of the empirical genomes are
found, indicating that this range of genome sizes may allow
the optimal usage of universal and contextual domain fami-
lies.

VIII. CONCLUSIONS

We presented from a statistical physics viewpoint a class
of duplication-innovation-loss stochastic processes able to
describe the probability distributions and scaling laws ob-
served in genomic data sets for protein structural domains
with few effective parameters. These models are different
declinations of the basic paradigm set by the Chinese restau-
rant process which, though much explored in the statistical
literature, remains relatively unexplored by the physics com-
munity, despite of its rich and peculiar phenomenology,
which could make it useful in multiple applications.

Our focus has been to present the basic phenomenology
of different variants of the model connected to possibly rel-
evant aspects of the evolutionary dynamics of protein do-
mains, prominently domain duplication, innovation, loss, and
the specificity of domain classes. In doing this, we have
shown how a mean-field approach, despite of its simplicity,
can be extremely powerful in the analysis of the qualitative
behavior of this class of models. More subtle aspects of these
models might be approached by simulations and refined
statistical-mechanics methods, directly accessing the sum on
all different paths.

For the standard CRP, we have shown how the scaling
laws in the number and in the slope of the observed power-
law distributions of domain classes are qualitatively repro-
duced by the typical or the average realization. The salient
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ingredient for this feature is that this model can include the
correct relative scaling of innovation to duplication moves,
which can be generated by statistical dependence of innova-
tion, or by the fact that the process of domain birth does not
give rise to identically distributed random variables at differ-
ent sizes.

The mean-field results can be obtained in two independent
ways: with dynamic equations for the population and number
of domain classes or, similarly as for the zero-range process
�32�, by considering the evolution of the number of classes
with a given population. The latter master-equation approach

gives access to the full histogram of domain class popula-
tion. The scaling of the slope of the domain class distribu-
tions can be understood as a finite-size effect on these histo-
grams. We have also shown how the uneven occurrence of
domain classes can be explained by the CRP provided one
considers the statistics of occurrence in a single realization.
This can be interpreted as the fact that genomes are related
by common evolutionary paths.

This phenomenology is extremely robust to the introduc-
tion of finite domain loss probabilities that do not scale with
n or F. For uniform domain loss, the full mean-field equa-
tions are still accessible analytically and point to the effect of
domain loss as a simple effective rescaling of the model
parameters. The presence of a loss rate that scales with size,
instead, can trigger a transition from sublinear to linear scal-
ing in the number of distinct classes.

Finally, we have discussed the case of models that intro-
duce the specificity of domain classes and thus explicitly
breaks the symmetry between them, as expected for the bio-
logical case. Such variants can be very useful in more de-
tailed statistical investigations �e.g., as a null model� and to
define inference problems on the available bioinformatic
data. For example, a preferential duplication of conserved
proteins has been reported in eukaryotes �34� and could be
tested against a duplication-innovation-loss model where a
“conservation index” characterizes specificity.

Here, we have shown how a CRP variant with specificity
can be formulated as a genetic algorithm where different
CRP virtual moves are selected on the basis of an informed
scoring function, defined on the basis of further empirical
observables related to domain classes �such as function, cor-
related occurrence, etc.�. In our case, we have shown how
such a variant, weighting the virtual moves according to the
observed occurrence of the finite pool of domain classes, has
very good quantitative agreement with the available data.

The future perspective on these systems and models is
abundant, both for the application of the models to the ge-
nomics of protein domains, where the most promising ways
seem to be the use in specific inference problems on species
with known evolutionary histories and in other problems of
statistical physics and complex systems, for example, to de-
velop new growth models for complex networks where the
nodes can evolve with similar moves. One prominent ex-
ample is the case of protein-protein interaction networks,
graphs where the nodes follow a dynamics that is coupled to
those of protein domains, while the edges can be inherited by
duplication, lost, or rewired by mutation and natural selec-
tion.
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APPENDIX: DATA AND METHODS

All data considered here were extracted from the SUPER-

FAMILY database versions 1.69 and 1.73. We considered do-
mains at the superfamily level, although similar results hold

TABLE II. Abbreviations used for the genomes in Fig. 10.

Abbreviation Full Name

a9 Streptococcus agalactiae A9

b0 Bacillus anthracis Sterne

b1 Baumannia cicadellinicola Hc

bl Bifidobacterium longum NCC2705

bx Bacillus cereus ATCC 10987

c5 Chlorobium chlorochromatii CaD

cd Corynebacterium diphtheriae NCTC 13129

ch Chlorobium tepidum TLS

ec Escherichia coli K12

ew Escherichia coli W3110

jk Corynebacterium jeikeium K411

lj Lactobacillus johnsonii NCC 533

ls Lactobacillus sakei ssp. sakei 23K

lv Lactobacillus salivarius ssp. salivarius UCC118

lx Leifsonia xyli ssp. xyli CTCB07

ni Neisseria gonorrhoeae FA 1090

oc Prochlorococcus marinus NATL2A

p0 Candidatus Protochlamydia amoebophila UWE25

pg Porphyromonas gingivalis W83

pp Streptococcus pyogenes MGAS2096

rr Rhodopseudomonas palustris BisB5

rx Rhodoferax ferrireducens T118

s4 Streptococcus agalactiae 2603V/R

s5 Streptococcus agalactiae NEM316

sd Streptococcus thermophilus LMG 18311

so Synechococcus sp. CC9605

sp Streptococcus pyogenes MGAS10394

sz Synechococcus sp. CC9902

tg Streptococcus pyogenes MGAS10750

ti Thiomicrospira denitrificans ATCC 33889

tr Thermus thermophilus HB8

ts Streptococcus pyogenes MGAS10270

vb Vibrio vulnificus YJ016

vp Vibrio parahemolyticus RIMD 2210633

ws Wolinella succinogenes DSM 1740

x1 Streptococcus thermophilus CNRZ1066

x2 Streptococcus pyogenes M1 GAS

x5 Bacillus cereus E33L
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for folds and families. A genome “size” n was defined as the
number of domain hits for each genome. The main data
structures considered were the number of domain classes and
the histograms of domain class population �see Figs. 9 and
10 and Table II�. We also considered the ranked occurrence
of a given domain class across genomes.

The different variants of the duplication-innovation-loss
model were simulated directly using a C�� code and com-
pared to the mean-field results and the empirical data. The
variant with class specificity couples the CRP model to a
simple genetic algorithm, selecting innovation moves that
choose distinct classes on the basis of their empirical occur-
rence. For all the variants, we derived and solved the mean-

field equations for the evolution of the main observables and
described alternative approaches for their solution.

The finite-size behavior of a CRP was studied comparing
the finite-size histograms obtained from direct simulations to
the asymptotic limit of the exact analytical result �Eq. �16��
�24� and defining a cutoff as the class size where the devia-
tion was larger than an arbitrary threshold. The cutoff was
studied as a function of n. For the CRP variants with speci-
ficity and domain loss, only the mean-field solution given
here is available for the same analysis. The exponent of the
empirical domain class distributions for genomes with differ-
ent size was estimated from a power-law fit of the cumula-
tive histograms, keeping into account the finite-size cutoff.
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